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ABSTRACT

A tungsten heavy alloy containing 93% W (Teledyne 93W-5Ni-2Fe alloy_ swaged
to 17%) was tested in torsion at strain rates of 0.0001, 0.1, and 600 s-1 to
failure. High rate tests were conducted using a Torsional Split Hopkinson Bar
apparatus. The results from these constant strain rate tests show that the
yield and failure strengths of this alloy increase with increasing strain rate
and the failure strain decreases with increasing strain rate. At 600 s~1 strain
rate, flow stress decreases with strain, thus indicating thermal softening of the
material at high strain rate of deformation. The instability that leads to the
initiation of failure at high rate is due to the formation of a localized shear
band. The width of the intense shear zone of deformation decreases with increas-
ing shear strain rate reaching a limiting width of one to two grains at high
strain rates. As the shear strain rate is increased, there is a reduction in
the number of cleavage and brittle grain boundary fracture zones. The results
under dynamic conditions show that the 93% W alloy deforms and fails quite dif-
ferently compared to that under slow rate of loading.
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INTRODUCTION

Tungsten heavy alloys are used in many applications for their mechanical and
physical properties such as high density, high strength, good ductility, and good corrosion
resistance.!-3 Tungsten heavy alloys such as 93W-5Ni-2Fe are of interest to the Army as
kinetic energy penetrators (replacement for depleted uranium) for defeating armor, because
of the high density and excellent mechanical properties. Usually, these mechanical
properties are obtained at slow loading rates. Since these alloys are going to be used under
dynamic loading conditions by the Army, it is essential to evaluate their mechanical
properties and failure behavior under high strain rate loading conditions. Unfortunately,
there is very little mechanical property and failure behavior data available for these alloys
under dynamic loading conditions.4-¢ Almost all of these available data in the literature
have been obtained under uniaxial compressive loading conditions. There are almost no
information available under dynamic shear loading conditions. Therefore, this work was
undertaken at the U.S. Army Materials Technology Laboratory (MTL) to understand the
deformation and failure behavior of a tungsten heavy alloy (WHA) under quasi-static to
high shear strain rate loading conditions.

EXPERIMENTS
Material

The 93%W alloy that was used for the experiments in this report was obtained from
Teledyne. Chemical composition and some of the mechanical properties of this alloy are:

W 92.85%
Ni 4.9%
Fe 2.25%

Density = 17.69 - 17.76 g/cc
Hardness = HRC 39-40
UTS = 23 MPa (160,000 psi)
Elongation = 13%

1. EKBOM, L. M., Tungsten Heavy Metals, Scand. J. of Meuall., v. 20, 1991, p. 190-197.

2. BOSE, A and GERMAN, R. M, Sintering Atmosphere Effects on Tensile Properties of Heavy
Alloys, Met. Trans. A, 19A, 1988, p. 2467-2476.

3. DOWDING, R. J., Tungsten Heavy Alloys: A Tutorial Review, 1991, P/M in Aerospace and
Defence Technologies, MPIF, Princeton, NJ, 1991, p. 109-116.

4. MEYER,L. W.et al., The Proc. of the 7th International Symposium on Ballistics, p. 289-293.

5. THAM, R. and STILP, A. 1., Yield Strength and Flow Stress Measurements of Tungsten Sinter
Alloys at Very High Strain Rates, Journal De Physique, Tome 49, No. 9, C3-85, 1988.

6. ZHANG B. P., ZHENG Y. L., PENG Q. Y. and XIONG Y. M., Dynamic Behavior of Tungsten
Sintered Alloys at High Strain Rates up to 10° s-!, to be published.




This alloy was processed by Teledyne using the following procedure. A mixture of
W, Ni, and Fe powder was isostatically pressed to 4.35 MPa (30,000 psi) in a Drybag
press. Pressed material was then sintered in a hydrogen atmosphere in a molybdenum
furnace at about 1520°C. Hydrogen atmosphere was used to reduce powder surface
oxides. The sintered material was vacuum annealed at about 1000°C for 10 hours to
remove the absorbed hydrogen. Annealed material was heated in an inert gas atmosphere
to about 1100°C and soaked for about an hour. It was then water quenched to give better
dynamic impact properties. Then the bars were machined and swaged to 17%.

Figure 1 shows the microstructure of this alloy taken in the longitudinal direction.
Microstructure in the transverse direction is similar to the one in the longitudinal direction.
Swaging to 17% does not seem to affect the microstructure of the alloy. As shown in the
figure, microstructure consists of two phases: nearly pure W spherical grains of bec crystal
structure and W-Ni-Fe matrix of fcc crystal structure. Matrix material provides the ductility
for the W alloy with these brittle W grains. The size of W grains are approximately 27 um
and are mostly surrounded by a thin layer of matrix material. However, some of W grains
are in contact with the adjacent W grains.

Figure 1. Microstructure of 93W-5Ni-2Fe Tungsten Heavy Alloy
swaged to 17%.
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Specimen Geometry

Geometry of the test specimen is shown in Figure 2. Gage section of the test
specimen is a thin wall tube (0.38-mm wall thickness) of 0.254-mm gage length and
outside and inside diameters of 10.16 and 9.40 mm, respectively. The wall thickness
corresponds to an average of 14 W grains. Hexagonal flanges with 60° shoulders are
machined to both ends of the thin tubular gage section, which are used to attach the
specimen to the elastic input and output bars of the test system. Before testing the
specimens, parallel to the axis of the specimen a fine line is scribed on the inside wall of the
specimen.

In this short gage length specimen, an almost homogeneous state of strain is
achieved after a few reflections of the loading shear stress pulse. In a specimen with a
similar gage area, but end flanges with sharper (90°) shoulders, the plastic zone starts at
the flange-gage section interface. Although the plastic zone starts at this interface, it is
contaim;d until it spreads gradually through the specimen and engulfs the whole gage
section.

0.5625" | o.42: C£0.001"
0.56 15" HEX | |
. 1
SECTION X-X X
DIM INCHES
c 0.100 (0.254 mm)
D 0.400£0.0005 DIA (10.16 mm)
E 0.370:0.0005 DIA (9.40 mm)

Figure 2. Specimen geometry.

7. LEUNG, E. K. C., An Elastic-Plastic Stress Analysis of the Specimen Used in the Torsional
Kolsky Bar.J. Appl. Mech., v. 47, 1980, p. 278.




Torsional Experiments

Thin walled (Teledyne 93% W alloy swaged to 17%) torsion specimens were tested
in shear at strain rates of 0.0001, 0.1, and 600 s-! to failure. The high rate (600 s-1) tests
were conducted using a Torsional Split Hopkinson Bar apparatus. More details of this
apparatus is given by Weerasooriya.8 Data acquisition and reduction procedure is also
described in this report.

A slow rate testing capability was added to this apparatus to achieve strain rates
from 0.0001 to 0.1 s1. A servomotor with a reducer (3600:1) was attached to the end
(nonspecimen end) of the output bar. During slow rate testing, the input bar was held
stationary using the clamp of the Torsional Split Hopkinson Bar. Linear Variable
Differential Transformers (LVDTs) were attached to both input and output bars. Relative
rotational displacement between the ends of the gage area was measured using these
LVDTs during the slow rate testing. Engineering shear strain of the specimen was
calculated using this relative angular displacement. Shear stress was calculated using the
thin wall tube assumption for the gage section of the specimen.

After testing, all the specimens were examined with optical and scanning electron
microscopes.

RESULTS AND DISCUSSION

Shear stress versus engineering shear strain results for the three different strain
rates (0.0001, 0.1, and 600 s-!) are given in Figure 3.

Shear stress - shear strain behavior is strain rate sensitive for this material. Figures
4 and 5 show yield stress and failure strength as a function of logarithmic strain rate,
respectively, from the constant strain rate tests. These plots show that both yield and
failure strengths increase with strain rate. From the observed linear behavior between the
yield stress and the logarithmic value of shear strain rate in Figure 4, following relationship

can be obtained relating the shear strain rate () to the yield stress (ty):
Ty = 23 loge() + 732

where Ty is given in MPa and ¥ is given in s-1. Total shear strain to failure is plotted as
function of logarithmic strain rate in Figure 6. As shown in this figure, total shear strain to
failure decreases with increasing strain rate.

For slow strain rates (0.0001 and 0.1 s-1), flow stress increases with increasing

shear strain (work hardening). In contrast, at high strain rate of 600 s-!, flow stress
decreases with increasing shear strain (softening). This indicates that the thermal softening
dominating over work hardening during deformation at high strain rate. The difference in
deformation at high strain rate is due to adiabatic heating of the material. Strain to failure at
strain rates of 0.0001 and 0.1 s-1 are approximately 55% and 48%, respectively. Strain to

failure at 600 s-! strain rate is approximately 19%.

8. WEERASOORIYA, TUSIT, The MTL Torsional Split-Hopkinson Bar, U. S. Army Matcrials
Technology Laboratory, MTL TR 90-27, 1990.
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Figures 7 and 8 show the micrographs taken in the vicinity of the fracture surface of

the failed specimens at strain rates of 0.0001 and 0.1 s-1, respectively. Closer to the
fracture surface, originally spherical W grains have d.formed to ellipsoidal shapes. Band
of this intense shear zone containing elliptical W grains is approximately 2.14 mm (here the

band is defined as two times the width of the zone in the figure) wide for 0.0001 s-! rate

and 1.4 mm wide for 0.1 s'1. These ellipses have aligned their major and minor axes 45° to
the shear direction. The directions of the major and minor axes correspond to the directions
of maximum tensile and minimum compressive principal stresses, respectively. Fracture
path is mostly of intergranular, but if a large W grain is blocking the path, fracture will go
through the grain splitting the W grain by the cleavage mechanism. This can be seen more
clearly in the scanning electron micrographs of the fracture surfaces given in Figure 9.
Intergranular and cleavage facets can clearly be observed. Fracture surface from 0.0001 s°!
strain rate test shows dimples, typical of ductile fracture, after initial intergranular
separation. This indicates that the cavities formed along the grain boundaries coalesce
together by the ductile mechanism of fracture of the matrix material separating them.
However, the areas showing this typical ductile failure decreases with increasing strain
rate.

Figure 10 shows the microstructure at the vicinity of the fracture surface of a failed

specimen which was tested at the strain rate of 600 s-1. In this case, in the layer of W
grains adjacent to the fracture surface, highly deformed W grains which are of elliptic shape
with their major axes aligned 45° to global shear direction can be observed. In contrast to
the slower strain rates, here the width of the intense shear zone is much smaller (width of
two grains). Figure 11 shows a typical fracture surface of a specimen failed after it has
undergone deformation at high rate. Grain boundary facets can be observed as for lower
rate tests. Cleavage and ductile dimple-like failure are not present as seen in lower rate
tests. Most of the fracture surface is covered with smooth facets. These areas may
correspond to W grains that have flowed like a fluid (extruded) during final deformation
just before the failure (this process is discussed later in detail). It is not possible to fully
explain these areas without any further analysis of this material.

Additional high rate tests were conducted by keeping the width of the shear input
pulse constant and gradually reducing the height of the pulse (corresponds to gradually
decreasing strain rate). At a strain rate of 400 s-1, it was possible to recover a specimen
just before the start of the fracture. Figure 12 gives a micrograph from this specimen
showing the initiation of the failure due to the formation of an intense shear band. Width of
the shear band is approximately of the size of two to three W grains (100 um). Length of
the shear band is 2.26 mm. Global shear strain at this instant is approximately 20%. Shear
strain rate of this test is 400£50 s-1. Since this material is swaged to 17%, an approximate
failure point for the annealed material can be assumed to be at a shear strain of 37% (initial
prestrain + strain to failure) at this strain rate,
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Figure 7. The details of the vicinity of a fractured specimen. Line A-A
approximately represents the end of the intensely deformed region.
The test was conducted at a shear strain rate of 0.0001 s-! at room
temperature. Global shear strain rate at fracture is 55%.
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Figure 8. The details of the vicinity of a fractured specimen. Line A-A
approximately represents the end of the intensely deformed region.
The test was conducted at a shear strain rate of 0.1 s-1 at room temperature.
Global shear strain rate at fracture is 48%.
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Figure 9. Typical fracture surfaces of failed specimens.
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Figure 10. The details of the vicinity of a fractured specimen. Line A-A
approximately represents the end of the intensely deformed region. The
test was conducted at a shear strain rate of 600 sl at room temperature.
Global shear strain rate at fracture is 19%.
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Figure 11. Typical fracture surface of a failed specimen strained at the rate
: of 600 s-1.
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Figures 13a-d show the morphology of various sections of the shear band at double
the magnification shown in Figure 12. Different sections of the total shear band show the
whole sequence of the formation of the shear band to formation of the final crack which
leads to the failure: intense localized deformation of W grains, formation of cavities,
coalescence of these cavities to form larger voids and flowing of remaining heavily
deformed W grains into these cavities, and the formation of the failure crack. In this
intensely deformed shear band, all spherical W grains have deformed to an ellipsoidal form
(Figure 13a). Major axis of the ellipse coincides with the maximum tensile principal strain
direction and minor axis coincides with minimum compressive principal strain direction.
Further tensile straining have opened up cavities at some of these elliptical grains at the
locations where the tensile axis meets the grain (see Figure 13b). Some of these cavities
initiates at the W-W grain contacts. These cavities have joined to form bigger cavities with
the remaining highly deformed W grains flowing into the cavities (Figure 13c). Figure 13c
also shows the tear drop like flow of W grains. Figure 13d shows the failure crack formed
after joining of these cavities. Additional work is being conducted to characterize sub-
structure morphology in the material in the shear band. Results will be reported in a future
publication.

SUMMARY AND CONCLUSIONS

Torsional tests were conducted to study the deformation and failure behavior of
93W-5Ni-2Fe alloy at different strain rates. Tests were conducted at three different strain
rates: 0.0001, 0.1 and 600 s-1. High rate tests (600 s-1) were conducted using a Torsional
Split Hopkinson Bar apparatus. After testing, all the specimens were analyzed using
optical and scanning electron microscopes.

From these constant strain rate test results, yield and failure strengths increased
with increasing strain rate; failure strain decreased with increasing strain rate. At 600 s°!
shear strain rate, flow stress decreased with strain, thus indicating thermal softening of the
material at high strain rate. The failure was due to the instability from the formation of a
shear band. High strain rates promoted the formation of shear bands. The width of the
intense shear zone of deformation decreased with increasing shear strain rate reaching a
limiting width of two grains (localized) at high strain rates. As the shear strain rate is
increased, there was a reduction in the number of cleavage and brittle grain boundary
fracture zones. The results under dynamic conditions showed that the 93% W alloy
deformed and failed quite differently compared to that under slow rate of loading. Thus,
the materials that are used under dynamic loading conditions should be evaluated under
high rate loading conditions.
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Figure 13a. Intensed localized shear band showing elliptically elongated
grains orienting 45° to the global shear direction. This figure corresponds
to the area A of the shear band in Figure 12.

Figure 13b. Formation of cavities at the ends of the major axes of the
elliptical grains. This figure corresponds to the area B of the shear band in
Figure 12,
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Figure 13c. Coalescence of the cavities forming longer cavities. Elliptical
grains have flowed in to these cavities. This figure corresponds to the area
C of the shear band in Figure 12.
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Figure 13d. Formation of the failure crack by the connecting large cavities.
Also see the splitting of large W grains in the path of the crack. This
figure corresponds to the area C of the shear band in Figure 12.
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